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ABSTRACT i

Adapnve relaxation algorithms use anti-jamming schemes that reqmr/eﬁeﬁher a 3

\)

large amount of computation or a large amount of memory. 'Tlﬂthls paperqwe presents ::

‘f

a non-adaptive approach that possesses substantial computational and memory advan- v

tages over the adaptive schemes. The approach uses averaging and may be applied N

‘L!

whenever the relaxation algorithm’s point-to-set maps satisfy appropriate assumptions. %}
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L INTRODUCTION .’;3;2
There exist many situations ([1)-[3], [5], [8], [10], [12]-[16]) in which the solution s
set D (P) (assumed to be in E” for simplicity’s sake) of a problem P may be expressed :::::
<, ¥
e as the intersection of the solution sets D (P;) of a finite number of problems P;, j = 1, ::E::
e
2,.p, thatis D(P) = D(P;)ND(P2)N -+ ND(P,). In that case, one may try to ol
i;; find a set T, point-to-set maps 4;(.), j = 1, 2,..., p, and a surrogate cost v (.) so that the ;'2::0
e e,
N following hypotheses are satisfied. '§:§:¢
Fv_a ‘?’::‘
' Hypothesis 1: =
b (i) T'is a closed subset of E. i
[ yh
B (ii) v () is from T into E. o
o "u',‘si
= Forj = 1,2,... p: r
o \J
fi;! (iif) 4;(.) is from T into all the non-empty subsets of T, :'g
oy . o
g:' (iv)D(P;) = {z€ T |z € A;(2)}. 0
", ot
Hypothesis 2: For j = 1, 2,..., p, if a point 2 is in T but not in 4;(z), scalars €;(z) > 0,
ci‘. "u ."
§:§ 6j(z) > 0 and );(2) exist such that v(y °) <v(z ") - §;(z), and A;(z) <v(z ") for everyy ié
LN . . ‘
;.:;; inA;(z") and for everyz " in B(z,£(z)) N T. '::s
o !
> Hypothesis 1 ensures that the relaxation algorithm given below is well defined o
A . e
:E and Hypothesis 2 is the usual monotonicity assumptions used to obtain asymptotic sta- ;’.E?ﬁ
" ) b’ai:i
:iiii bility in the large [4], [6}, (7], [11], [17], [18]. i
o Starting at some point z, in T, one generates a sequence {z;} by using one of the ‘.a
;”,i— maps A;(.) at iterationi. _ (:E
i‘i L/EE:esion For S <
. A,’ : . H + ————s . e <
’ Algorithm 1: Letz in T be given. NTIS  CRAR _—a——— !
3 . DTIC TAB 0 o
R Step0: Seti =1 Unannounced 8] :::;a
- Justificaton ] :::::
Distibution] -
' Availability Codes '::Ef
| T hvai s or i
- Dist Special :;:::
: - i
p-| .?.,
! * &
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Step 1:  Find a point x; in A, )(2;), 1 <m (i) <p.
Step2: Ifv(x;)>v(z), letz; 4, =z, leti =i+1,and goto Step 1; else, letz; .| =

x;,leti =i+1and go to Step 1.

If Algorithm 1 uses point-to-point maps a;(.), that is, if 4;(z) contains one
and only one point g;(z) for every zin T and j = 1, 2,..,, p, if those maps are continu-
ous on 7, and if Hypotheses 1 and 2 are satisfied, then every cluster point of every
sequence generated by Algorithm 1 is in D (P), and furthermore, if D (P) contains at

most a countable number of points, every bounded sequence generated by Algorithm

1 converges to a point in D (P), provided that {m (i)} satisfies the following hypothesis :EE

proposed by Fiorot and Huard [2], [3, p. 76, Hypothesis HS]: E;':‘E

Hypothesis 3: An integer r exists so that to everyi = 1, 2,... and j in the interval [1p] ‘:.;é

correspond at least one index k in [i,i +r] such that m (k) = j. ':

It is not difficult to find maps m (.) that satisfy Hypothesis 3: a cyclic J ‘

approach corresponds to lettingm (1) = 1, m(2) = 2,...,m(p) =p,m(p +1) = -

p +1,..., etc, and Aitken double sweep choice [4, p. 158] corresponds to letting m (1) = :,‘:E;;

1,m@Q) =2..,m@P)=p,m(p+1) =p-1,m(p +2) = p-2,.., etc. For examples of §§§

the approach used in the context of unconstrained minimization, see Luenberger [4, ]v )

pp. 158-159]. ;ﬁ%

Unfortunately, when Algorithm 1 uses point-to-point maps that are not con- ,;E::

tinuous or point-to-set maps, its asymptotic properties may not be related to D (P) ?

([3], [12]). In such cases one may use one of the two adaptive schemes given in [7] for gﬁ:‘

determining the quantity m (i) at iteration i. Both schemes have drawbacks: either a :;§§

:‘,-‘." : large amount of computation or a large amount of memory is required. To alleviate
'*.:E. those difficulties, we propose an algorithm based on averaging that uses a sequence E‘

;E’ {m (i)} that may be chosen non-adaptively. :§¢

e, :";
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II. ANON-ADAPTIVE AVERAGING SCHEME
The asymptotic properties of the averaging algorithm are related to D (P)

when, in addition to Hypothesis 1, the following hypothesis is satisfied.

Hypothesis 4:

(i) The set T is convex.

(ii) The map v (.) is upper-semi continuous on T with respect to 7, that is, to every

pointz in T and § > 0 corresponds ane > Osuch thatv(z ") <v(z) + éfor everyz " in

B(z,e)NT. ol
For every index j in {1, 2,..,, p}: ’—:—:“
(iiii) if a point z is in T but not in 4;(z), scalars ¢;(z) > 0, §;(z) > 0 and A;(z) exist such :'é::
that v (z " +uly “z ")) <v(z ) - wbj(z), and ;(z) < v (z ) for every p in the interval L
[0,1], for everyy “ inA;(z ") and for everyz “ in B(z,¢;(z)) N T, ,‘::
(iv) if a point z is in4;(z), then to every scalar § > 0 corresponds a scalar € > 0 such :f;g:‘
thatv(z) - 6<v(y ") for everyy " in4;(z ") and for everyz " in B(z,e) N T. N

The averaging algorithm uses an initial guess of a solutionz; inTanda ::1;
sequence {m (i)} that takes its values in the set {1, 2,..., p}. :ﬁ;?
Algorithm 2: Givenz, in T and {m (i)} in {1, 2,..., p} ‘;
Step0: Seti =1, “‘
Step 1:  Find a point y; in A, ;) (). ::‘:

Step2: Ifv(y;)>v(z),letz; 4y =2z, leti =i+1and go to Step 1; else go to Step 3.

Step3: Lety = [ , V(ITy.: (ﬁ)]

N Step4: Letz; . = z;+u;(y;i-z;), leti =i +1and goto Step 1.

o

&

b Lemma 1: If Hypotheses 1 and 4 are satisfied, then Algorithm 2 is well defined, and

whenever z; ., and z; are two consecutive points of a sequence generated by the

RANANALANBASNALRSENRARA AN LA NA ES REAMN RALAM: LI ALY, »
R R R Lo SR ..'_"e“«",“-?"“i". ¢ _‘?‘\: L‘;‘ ‘:q‘:‘f.’{ _»“M"V.i“ *i‘ ” “" .." b
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algorithm such that z; ,1 #2z;, thenv(z;+,) < v(z), and ||z 41z || <v(z)-v ¥i).
Proof: Parts (ii) and (iii) of Hypothesis 1, Part (i) of Hypothesis 4, and the fact that if
v(y:) < v (), the quantity 4 is in [0,1] immediately imply that the algorithm is well
defined. Ifz; .y and z; are two consecutive points of a sequence generated by Algo-
rithm 2, and if 2; +; #2;, thenitis clear thatv (y;) < v(Z), s #0,2 41 = 2+ (yi-z)
and from (iii) of Hypothesis 4, v (z; +1) <v(z). If & < 1, then {|z; .1z || =

v(z)v i) if i = 1, thenz; oy =y;,v(z)v ) 2 llyi-z ||, and thus, if 2, ., #2,

v(@)v i) 2 llyizill = lzi+1-2]l.O

We now analyze the asymptotic properties of Algorithm 2.
Lemma 2: Suppose that Hypotheses 1 and 4 are satisfied and let {z;} be a sequence
generated by Algorithm 2. If an infinite subset K of the integers exists so that (i) the
subsequence {z;}x converges to some point z., (ii) the subsequence {y; }x is bounded
and (iii) m (i) = j for every index i in K, then z. belongs to 4 ;(z+), the subsequence
{1lz; +1 - z: || }x converges to 0, and the subsequence {z; ,; }x converges to ze.
Proof: The set T is closed, the sequence {z;} is in T, and thus z. is in 7. Assume that
z« does not belong to A;(z+). Part (iii) of Hypothesis 4 and the fact that m (i) = j for
every index i in K imply that an index k and a scalar §;(z.) > 0 exist such that

v (2 +ulyiz;)) <v(z;) - ubj(ze) (3)

for every u in [0,1] and for everyi >k, i in K.
Using Eq. (3) with u = 1 yields

v (i) <v(z) - 6j(ze). 4)

Thus, for every i > k, i in K, v (y;) < v(2;) and y; is computed in Step 3 of Algorithm 2,

The subsequences {z;}x and {y;}x are bounded and thus a scalar A > 0 exists so that

llvi-zi || <A for alli in K. Using Eq. (4) we may immediately conclude that for every i
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>k,iinK §
i
v(z)v (i) S 6;(z+) v
r‘_ » ")’i'zi " - A ’ 0"
o “ and ::
':.,4 .';
o 5(z) 3
o mZm’min[l.’ ; <
A 3
f': It follows that for everyi >k, iin K 5
R 1
N v (2 +1(i-2i)) <V (2) - bmindj(2+) u
- and 5
N
A ")
b V(2 +1) SV (@) - i (2} (5) N
1: ':
From Lemma 1 we know that v (z; +1) <v (2;) for every index i and thus Eq. (5) "f
;f:‘,';' implies that the sequence {v(z;)} is unbounded from below. This is not possible in E
LA
.‘:3: view of Hypothesis 4, part (iii), and we must conclude that z. belongs to 4;(z.). i
Suppose now that { ||z; ,1-; || }x does not converge to 0, that is, suppose that an '
l.'—‘*'b .,
N infinite subset M of K and a scalar A > 0 exist so that ||z; ,1-z; || > A for everyiin M. “'(
N :.'ElS !
Lk Lemma 1 implies that .\
) v(z)v i) 2 llzi v1-zl, "
"
L) .0
o and ::.
v "
v(ri)<v(z)-A. (6) i
:‘:';‘ The point z. is in 4(z+), and part (iv) of Hypothesis 4 implies the existence of a scalar i:
oty it
i::’, e > Osuch that v(z.) - % <v(y) for every y in 4;(z) and for every zin B (z.,e) N T. :
o The subsequence {z;}» converges to z, the point y; is in 4;(z;) for every index i in M, A
e . .. '
A and therefore an integer m exists so that for everyi>m,iinM, z; isin B(z.,e)n T ‘5;
e ;
" and thus ‘t
%
)
3
(%4
N
(N
W
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;i . . &
v(ze)- 5 <vn). (7 3;:";
Using Egs. (6) and (7), we obtain N
" '
u A 3
g Vi) + 5 <v(@) ®) vy
ey o
for everyi >m, i in M. Eq. (8) contradicts part (ii) of Hypothesis 4 and we must con- ‘iﬁ
2y "
‘;:’;: clude that {||z; +1-z; || }x converges to 0. The subsequence {z;}x converges to z. and .:fé
% 0
jfgi:: therefore the subsequence {z; .1 }x converges to z« also. O ;:23
e Lemma 3: Suppose that Hypotheses 1 and 4 are satisfied and let {;} be a sequence "
4 o ¢
«3 generated by Algorithm 2. If an infinite subset K of the integers exists so that the : t
b3 by,
:“}' subsequence {z; }x converges to some point z. and the subsequence {y; }x is bounded, ‘:~
T then the subsequence {z; ;1 }x also converges to z.. .{
lO:‘ " :
;:3' Proof: Let the sets K(j), j = 1, 2,..., p,J and L be defined as follows: ‘gi
‘Q. , ! ‘;
K()={ieK|m@)=j}
() ¢
5 'p
| ‘4'3 J = {j | K(j) contains infinitely many indices } N
p \
- ."
- 9
L=vuK( :
J j€J ) &
':‘: c,::
a It is clear that {z;}g ;) converges to z. for every j inJ. Lemma 2 implies that %::
‘i'ﬁ 0l
; ::; {zi +1}x(j) converges to z« for every j inJ, and thus {z; ,}; converges toz.. The :f“
" definition of L implies that an integer k exists so that 2
o %
4 ieK|izk)={ieL|izk} &
t:ﬁ: N
S and thus the subsequence {z; . }x converges to z.. 0 9‘
:fﬁ‘: The sequence {m (i)} cannot be arbitrary if the asymptotic properties of ::E
ol
;,.’;;: Algorithm 2 are to be related to D (P). Known results ([2], [3]) indicate that {m (i)} sj
) should not only take on each value j, j = 1, 2,..., p for infinitely many indices i, but that "
i
¥ ‘j‘:', g
e R

B ‘.,
OO £ b (7 LALLM S M R M RN M 00 I OUE) TN
L SYTATM . RS IR bt :i"}'sfi?ﬁfgf,f

e
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the "density" of occurrence of these values must not become vanishingly small, that is,
the map m (.) must satisfy Hypothesis 3.

Theorem 1: Assume that Hypotheses 1, 3 and 4 are satisfied, and let {z;} be a
sequence generated by Algorithm 2. If the sequence {y;} is bounded, then {z;} is
bounded, every cluster point of {z;} is in D (P), and {z;} is asymptotically regular, that
is, the sequence {||z; +1 -z ||} converges to 0.

Proof: The definition of Algorithm 2 implies that z; , ; is in the convex closure of the
set of points 21,y 1, 2,..., i, and thus the boundedness of {y;} implies the bounded-
ness of {z;}. Let z. be a cluster point of a sequence {z;} generated by Algorithm 2.
An infinite subset K of the integers exists so that the subsequence {z;}x converges to
z.. Hypothesis 3 implies that an integer r exists such that {1, 2., p} = {m (),

m (i +1),.., m (i +r)} for every positive integer i. Lemma 3 implies that the subse-
quences {Z; +1}x, {Zi +2} K- {Zi +r}x cOnverge toz.. Let the sets L and K(j), j = 1,

2,..., p be defined as follows:

L={i|ieK}u{i|i-leK}u ---u{i|ir€eK},

K(G)={ieL|m@)=j}
The definition of L implies that if i is in K theni,i +1,i{ +2,..., and i +rare in L. Thus
to every j in {1, 2,..., p} and i in K correspond an index i (j) in L such that i (j) >,
i(j)-i<r,andm(i(j)) = j. It follows that K (j) contains infinitely many indices for
every j in {1, 2,..,, p}, and using Lemma 2, we may then conclude that z. is in 4;(z+)
for every j in {1, 2,.., p}, and thus in D (P). The proof that {z;} is asymptotically regu-
lar is similar to the proof that {||z; ,; - z; || }x converges to 0 in Lemma 2 and has been

omitted. O

The cluster point set of an asymptotically regular and bounded sequence is

not arbitrary: it contains either one point or an uncountable number of points. This
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'result, shown by Ostrowski [9, p.173] may be used to show that sequences generated

by Algorithm 2 converge. v
Corollary 1: Assume that Hypotheses 1, 3 and 4 are satisfied. If D (P) contains at ‘;;j
3
most a countable number of points and if T is bounded, then every sequence {z;} gen- ) ;:
1] .'
erated by Algorithm 2 converges to a point in D (P). "
Note that it is possible to parametrize Algorithm 2 by a scalar a > 0. Let g N
th
in Step 3 of Algorithm 2 be defined by ‘i;
ik,
— [1, a(v(z,-)-v@.-»]' _.
Ilyi-z; |l .
Theorem 1 and Corollary 1 hold for every a > 0, and therefore it is possible to control -,
{i
when the anti-jamming feature of Algorithm 2 takes effect through the choice of o *
3
III. CONCLUSION X4
Relaxation algorithms may be used whenever the problem to be solved exhi- B
bit the appropriate structure, but anti-jamming schemes may have to be present to :
Nl
insure the desired convergence properties. To illustrate that point, we consider now "
the coordinate descent method for unconstrained minimization. ::E:
K}
Let T = E”, and given a continuously differentiable map v(.) from T into E, ' x
¢
and n linearly independent vectors ej, j = 1,2,..,ninE”, let :::;L:
N
D) ={z | W() =0} &
b
and forj = 1, 2,..,n, let 2
>3
D(P) = {z | <W(z).d;> = 0}. '
‘ 3
Thus, problem P consists in finding a point in D (P) and it is clear that a point z is a
Y] v
fs:fﬁ solution of P if and only if it is a common solution of the problems P;, j = 1, 2,..., n, E:;:
! 40';. N :
“ where each problem P; has a solution set D (P;). For everyj = 1,2,...,n,let 4;(.) be ::E.
o
)
- o

i, " - N
: ;?" Al PN “’.’.!.,‘.
SR R B
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;gs the map from T into all the subsets of T defined by -
) ~
Dk e
- Aj@) ={y =z+M; | <W(y).d;> = 0}. il
B 42‘
:,'; ! Givenz in T and j in {1,2,...,1}, it is possible to obtain points in 4;(z) by minimizing d"
E{j: v(.) over the line passing through z with direction d;. Coordinate descent methods :;
BN .
J for minimizing v(.) consists in using Algorithm 1 with p = n and a sequencing map 'f{,
o y .
%E:! m (.) that satisfies Hypothesis 3. Such methods are useful when the structure of v (.) e
R/ N :,;‘Vr !
-,':.E is such that its minimization along the privileged directions d; is easy. Although it is Y
s ot
A sometimes believed that such methods produce the desired results, the examples given '.
o "
‘;:i in [3] and [12] show that jamming may occur, that is, the sequences {Vv (z;)} that W
:i,‘:.' correspond to the sequences {z;} generated by Algorithm 1 may be bounded away j.:j
U .¢0
. | from 0. To prevent jamming, one may use either one of the two adaptive schemes %—
f given in [7] or the averaging scheme presented in this paper. The non-adaptive ::E:
Iy (
A schemes have a costly overhead that results from having to determine m (i) at every ':‘i‘:‘
LA .
. iteration i. The scheme (Algorithm 2) presented in this paper is non-adaptive: {m (i)} ~
i
3':;:{ is given and thus the overhead needed to implement anti-jamming consists only in the bﬁ
L) " e
?g?:f determination of the appropriate step length. The efficiency gained by using averag- E j
! . . . . . . o
J ing is obtained at a price: the assumptions that insure the convergence of Algorithm 2 '
o t
& are stronger than the assumptions that insure the convergence of the adaptive algo- 3
ki %4
[N »
;;:: rithms given in [7]. Fortunately, Hypothesis 4 is satisfied in most cases and the !
& o
" averaging scheme is therefore applicable. For example, the reader may verify that the
gl v
.;éf averaging scheme can be used to prevent jamming when the coordinate descent Et
[ 5
':.":', method is used to minimize the three functions proposed by Powell in [12]. ';
L ‘
. b
: £
) . :
ks :
b 3
i 2
o 3
::::: Wt
:’l‘] : ]
o . l':
> > e
X W
o . =
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